Package: multibias 1.6
multibias: Simultaneous Multi-Bias Adjustment
Quantify the causal effect of a binary exposure on a binary outcome with adjustment for multiple biases. The functions can simultaneously adjust for any combination of uncontrolled confounding, exposure/outcome misclassification, and selection bias. The underlying method generalizes the concept of combining inverse probability of selection weighting with predictive value weighting. Simultaneous multi-bias analysis can be used to enhance the validity and transparency of real-world evidence obtained from observational, longitudinal studies. Based on the work from Paul Brendel, Aracelis Torres, and Onyebuchi Arah (2023) <doi:10.1093/ije/dyad001>.
Authors:
multibias_1.6.tar.gz
multibias_1.6.zip(r-4.5)multibias_1.6.zip(r-4.4)multibias_1.6.zip(r-4.3)
multibias_1.6.tgz(r-4.4-any)multibias_1.6.tgz(r-4.3-any)
multibias_1.6.tar.gz(r-4.5-noble)multibias_1.6.tar.gz(r-4.4-noble)
multibias_1.6.tgz(r-4.4-emscripten)multibias_1.6.tgz(r-4.3-emscripten)
multibias.pdf |multibias.html✨
multibias/json (API)
NEWS
# Install 'multibias' in R: |
install.packages('multibias', repos = c('https://pcbrendel.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/pcbrendel/multibias/issues
- df_em - Simulated data with exposure misclassification
- df_em_om - Simulated data with exposure misclassification and outcome misclassification
- df_em_om_source - Data source for 'df_em_om'
- df_em_sel - Simulated data with exposure misclassification and selection bias
- df_em_sel_source - Data source for 'df_em_sel'
- df_em_source - Data source for 'df_em'
- df_om - Simulated data with outcome misclassification
- df_om_sel - Simulated data with outcome misclassification and selection bias
- df_om_sel_source - Data source for 'df_om_sel'
- df_om_source - Data source for 'df_om'
- df_sel - Simulated data with selection bias
- df_sel_source - Data source for 'df_sel'
- df_uc - Simulated data with uncontrolled confounding
- df_uc_em - Simulated data with uncontrolled confounding and exposure misclassification
- df_uc_em_sel - Simulated data with uncontrolled confounding, exposure misclassification, and selection bias
- df_uc_em_sel_source - Data source for 'df_uc_em_sel'
- df_uc_em_source - Data source for 'df_uc_em'
- df_uc_om - Simulated data with uncontrolled confounding and outcome misclassification
- df_uc_om_sel - Simulated data with uncontrolled confounding, outcome misclassification, and selection bias
- df_uc_om_sel_source - Data source for 'df_uc_om_sel'
- df_uc_om_source - Data source for 'df_uc_om'
- df_uc_sel - Simulated data with uncontrolled confounding and selection bias
- df_uc_sel_source - Data source for 'df_uc_sel'
- df_uc_source - Data source for 'df_uc'
- evans - Evans County dataset
causal-inferencecausal-modelsepidemiology
Last updated 19 days agofrom:9f7a926688. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 04 2024 |
R-4.5-win | OK | Nov 04 2024 |
R-4.5-linux | OK | Nov 04 2024 |
R-4.4-win | OK | Nov 04 2024 |
R-4.4-mac | OK | Nov 04 2024 |
R-4.3-win | OK | Nov 04 2024 |
R-4.3-mac | OK | Nov 04 2024 |
Exports:adjust_emadjust_em_omadjust_em_seladjust_emcadjust_emc_omcadjust_emc_seladjust_omadjust_om_seladjust_omcadjust_omc_seladjust_seladjust_ucadjust_uc_emadjust_uc_em_seladjust_uc_emcadjust_uc_emc_seladjust_uc_omadjust_uc_om_seladjust_uc_omcadjust_uc_omc_seladjust_uc_seldata_observeddata_validation
Dependencies:clidplyrfansigenericsgluelifecyclemagrittrpillarpkgconfigR6rlangtibbletidyselectutf8vctrswithr